On a family of symmetric polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Polynomials

f(T1, . . . , Tn) = f(Tσ(1), . . . , Tσ(n)) for all σ ∈ Sn. Example 1. The sum T1 + · · ·+ Tn and product T1 · · ·Tn are symmetric, as are the power sums T r 1 + · · ·+ T r n for any r ≥ 1. As a measure of how symmetric a polynomial is, we introduce an action of Sn on F [T1, . . . , Tn]: (σf)(T1, . . . , Tn) = f(Tσ−1(1), . . . , Tσ−1(n)). We need σ−1 rather than σ on the right side so this is a...

متن کامل

Remarks on a family of permutation polynomials

We study a family of permutations of the finite field Fqn given by x + γ f(x), where γ ∈ Fqn and f : Fqn → Fq. In particular, we determine the cycle structure and the inverse of such a permutation.

متن کامل

On Symmetric Square Values of Quadratic Polynomials

We prove that there does not exist a non-square quadratic polynomial with integer coefficients and an axis of symmetry which takes square values for N consecutive integers for N = 7 or N ≥ 9. At the opposite, if N ≤ 6 or N = 8 there are infinitely many.

متن کامل

Factorization of symmetric polynomials

We construct linear operators factorizing the three bases of symmetric polynomials: monomial symmetric functions mλ(x), elementary symmetric polynomials Eλ(x), and Schur functions sλ(x), into products of univariate polynomials.

متن کامل

A family of symmetric polynomials of the eigenvalues of a matrix

In this paper, we consider a family of symmetric polynomials of the eigenvalues of a complex matrix A and find an explicit expression of each member of the family as a polynomial of the entries of A with positive coefficients. In the case of a nonnegative matrix, one immediately obtains a family of inequalities involving matrix eigenvalues and diagonal entries. Equivalent forms of some of the o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2010

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2010.03.061